GASTEC

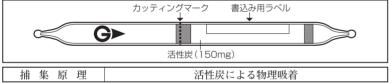
No.251S2-20

Instructions for use (IM02251S2-20J2) Charcoal Tube

取扱説明書 活性炭チューブ

安全にお使いいただくために

使用前に、本書及びガス採取装置等の取扱説明書をお読みください。


↑注意 けがの防止のために
・活性炭チューブの両端を折り取るとき、目から遠ざけてください。
・活性炭チューブの切り口、かけらに素手で触れないでください。

性能維持、信頼性確保のために
・ガス採取装置を使って測定してください。
・活性炭チューブの保管条件及び有効期限は箱に表示されています。

適用範囲

空気中の有機溶剤蒸気の測定に使用してください。

仕 様 (性能向上のために仕様や外観などは変更することがあります。)

対象物質・通気速度・捕集時間により破かが生じます。破かの確認を必ず行ってください。

測定手順(ガス採取装置の取扱説明書等を参照してください。)

- ① サンプリング直前にオプションのチップホルダ等で活性炭チューブの両端を折り取る。
- ② 活性炭チューブの矢印(G►)をガス採取装置側に向け、ガス採取装置に取り付ける。
- ③ ガス採取装置のスイッチを"ON"にしサンプリングを始める。サンプリング中は活性炭チューブを垂直にしておく。必要に応じてバックアップ用として後段に1本接続する。
- ④ 所定の通気速度, 捕集時間でサンプリング後, 直ちに活性炭チューブの両端に キャップを奥まで取り付け, 分析を行うまでの間は冷暗所 $(0\sim25^\circ\mathbb{C})$ または冷蔵 庫 $(0\sim10^\circ\mathbb{C})$ に保存する。

分析手順

- ① 活性炭チューブのカッティングマークの部分を慎重に折り、グラスウールを取り除く。活性炭をミニバイアルまたは共栓試験管に入れ、栓をする。
- ② 一定量の脱着溶媒を活性炭に加え、栓をした後、手で軽く振とうする。時々軽く振とうしながら、1時間以上放置し抽出する。
- ③ 抽出終了後、マイクロシリンジで採取した試料液1μLをガスクロマトグラフに 注入し、ピーク面積を測定する。
- ④ ピーク面積と検量線の関係から求めた最終試料液中の測定対象有機溶剤濃度を 右式に代入し環境空気中濃度(ppm)を算出する。ただし、バックアップ用の活性 炭のピーク面積が1本目の活性炭の10%以上になった場合、捕集率が低下して いる可能性があり正しい測定値は得られない。

ppm単位

$$C_{(ppm)} = c \times q \times \frac{22.4}{M} \times \frac{(273+t)}{273} \times \frac{1}{Q} \times \frac{1}{\varepsilon}$$

C(ppm): 環境空気中濃度(ppm)

: 最終試料液中の測定対象有機溶剤濃度(µg/mL)

g : 脱着溶媒量(mI)

M : 分子量

t : 気温(℃)

Q : 吸引試料空気量(L)

ε :脱着率

ug/m³単位.

$$C_{(\mu g/m')} = c \times q \times \frac{1000}{Q} \times \frac{1}{\varepsilon}$$

C (μg/m): 環境空気中濃度 (μg/m)

c : 最終試料液中の測定対象有機溶剤濃度 (µg/mL)

q : 脱着溶媒量(mL) 3 : 吸引試料空気量(L)

ε :脱着率

検量線の作成例

① 標準試料を脱着溶媒に溶かし、メスフラスコで100mLとする。

例:トルエン標準原液

トルエン(比重0.867)1mLを脱着溶媒に溶かし、メスフラスコで100mLにする。 0.867g/100mL=8670 ug/mL

これを更に $10 \cdot 30 \cdot 60 \cdot 100$ 倍希釈してそれぞれ $867 \cdot 289 \cdot 144.5 \cdot 86.7 \mu g/m$ L として標準系列とする。

② それぞれの標準液を 1.0μ Lガスクロマトグラフに注入し、ピーク面積を求める。この操作を繰り返して平均値を取り、 1.0μ L中に含まれる標準試料の絶対量を示す検量線を作成する。(最低濃度の標準液を5回繰り返し分析し、その標準偏差 σ に対して検出限界を σ 3 σ 5、定量限界は σ 10 σ 2 σ 2 σ 5

脱着率の測定

活性炭の脱着溶媒を選定する場合は脱着率の試験を行う。尚、脱着率は下記の方法のいずれかにより求める。

①相平衡法 : 脱着溶媒に一定量の試料を添加したものをバイアルに入れた活性炭 に加え、密栓して1時間以上放置後の溶液濃度の減衰率を測定する 方法。検量線作成時に使用した標準を併用しても良い。

②直接添加法: 既知量の試料を直接捕集管に添加し、密栓して4℃, 12時間保存後, 脱着させて添加量と回収量の割合を測定する方法。

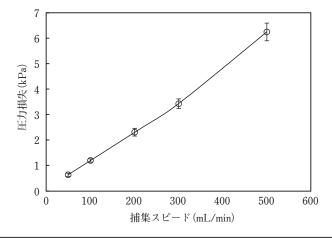
*脱着率は使用する装置または分析操作で変動することがあるので各分析者で求めて ください。 下記に脱着率が二硫化炭素のみで90%以上であることが再現性良く確認された物質の例を示します。

脱着率の例(脱着溶媒:二硫化炭素/150mg-活性炭)

アルコール・ケトン類	脱着率(%)	変動係数(%)
イソプロピルアルコール	95.7	1.83
イソブチルアルコール	97.8	2.2
アセトン	106.1	2.1
メチルエチルケトン	104.5	2.2
メチルイソブチルケトン	102.0	2.3

酢酸エステル類	脱着率(%)	変動係数(%)
酢酸メチル	106.4	2.1
酢酸エチル	106.6	2.2
酢酸ブチル	103.5	2.3
酢酸イソブチル	104.5	2.3

有機塩素化合物	脱着率(%)	変動係数(%)
ジクロロメタン	105.2	2.2


芳香族炭化水素	脱着率(%)	変動係数(%)
トルエン	98.6	2.5
エチルベンゼン	100.7	2.3
m,p-キシレン	93.3	2.4
11511年 1171年	107 关 44 (07)	去去. 1元型. /o/\

脂肪族炭化水素	脱着率(%)	変動係数(%)
ノルマルヘキサン	108.2	2.3

その他	脱着率(%)	変動係数(%)
シクロヘキサノン	106.6	3.8
エチレングリコールモノブチルエーテル	92.7	2.3

| 記載以外の物質に関してはお問い合わせください。

251S2-20 圧力損失の一例

自動ガス採取装置の設定捕集スピードに対する圧力損失が定流量使用範囲を 超えた場合、設定流量で吸引できなくなります。

オプション

チップホルダ

廃棄

この活性炭チューブには有害物質を含んでいません。一般廃棄物、もしくは産業廃棄物の"ガラスくず、コンクリートくず及び陶磁器くず"として廃棄が可能です。

保証とアフタサービス

- 万一、品質に不都合な点がありましたら、弊社にお問い合わせください。
- ガス測定、品質に関する質問をお気軽にお問い合わせください。 お問い合わせ失・株式合社 ガステック 管業本部

お問い合わせ先:株式会社 ガステック 営業本部 〒252-1195 神奈川県綾瀬市深谷中八丁目8番6号

TEL: 0467 (79) 3911 FAX: 0467 (79) 3979 ホームページアドレス: http://www.gastec.co.jp/